
Journal o f  Global Optimization 8: 245-261, 1996. 245 
© 1996 Kluwer Academic Publishers. Printed in the Netherlands. 

The Appl icat ion  of  Non- l inear  Bi- level  
P r o g r a m m i n g  to the A l u m i n i u m  Industry  

MILES G. NICHOLLS mnicholls@swin.edu.au 
School of Information Systems, Swinburne University of Technology, PO Box P18, Hawthorn, 
Victoria, 31P2 Australia 

Received January 17, 1995; Revised July 13, 1995 

A b s t r a c t .  In this paper, a solution algorithm is presented for the bi-level non-linear programming 
model developed to represent the complete operations of an aluminium smelter. The model 
is based on the Portland Aluminium Smelter, in Victoria, Australia and aims at maximising the 
aluminium production while minimising the main costs and activity associated with the production 
of this output. The model has two variables, the power input measured in kilo-Amperes (kA) and 
the setting cycle (of the anode replacement [SC]). The solution algorithm is based on the vertex 
enumeration approach and uses a specially developed grid search algorithm. An examination of 
the special nature of the model and how this assists the algorithm to arrive at an optimal unique 
solution (where there exists one) is undertaken. Additionally, future research into expansion of 
the model into a multi-period one (i.e., in effect a "staircase" model) allowing the optimisation 
of the smelter operations over a year (rather than as is currently the case, one month) and the 
broadening of the solution algorithm to deal with a more general problem, are introduced. 

K e y w o r d s :  Global Optimisation, Bi-level Non-linear Programming, Vertex Enumeration, Grid 
Search Algorithms 

1. I n t r o d u c t i o n  

The mathematical model of the smelter at Portland has been discussed in con- 
siderable detail in Nicholls and Hedditch(1993), Nicholls(1993), Nicholls(1994) and 
Nicholls(1995). In essence, the simple model developed allows the reduction cell, 
ingot mill and rodding (anode preparation) operations to be represented together 
with the anode plant production activities. Additionally, the model is able to en- 
capsulate the feed back loop associated with the spent anodes. 

The plant operates in such a way that each of the "areas" mentioned above, 
are autonomous business units within the plant and are able to make decisions 
in their own right. They are subject to the overriding consideration of maximising 
aluminium production (essentially the province of the potrooms where the reduction 
cells are located). However, the operations of anode production and preparation 
are driven by another variable, the setting cycle (i.e., how long the anodes are left 
in the reduction cells before replacement). The longer the setting cycle, the less 
anodes are required per period of time and thus the less these areas need to work 
and incur costs. Consequently, the potrooms and ingot mill are in effect maximising 
the production of aluminium, while the anode production and anode preparation 
areas are concerned with maximising the setting cycle. To this end the model is a 
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bi- level one, as it meets all the requirements as summarised by Wen and Hsu(1991, 
p 126). The problem is not one belonging to a bi-criteria class even though the 
traditional solution approaches for the bi-level problem are inapplicable and the 
problem specification has been mistaken by some for a bi- criteria problem. This 
classification aspect will be discussed further below. 

Because of the special nature of the problem (which is discussed below), the 
usual approach adopted to solving a linear bi-level programming problem (BLP) 
of this type (see for example Bard(1983), Anandalingham(1988) and Narula and 
Nwosu(1985)) is inapplicable. The non-linearity associated with the model together 
with the unique specification of the objective functions requires a new solution 
algorithm. With the non-linear bi-level solution algorithm, the basis is also laid 
for its extension to multivariable problems (i.e., greater than two variables). The 
solution algorithm developed is also, it is believed, a first in terms of its non-linear 
capabilities. 

In the section below, the mathematical model is depicted and compared to more 
conventional bi-level problems (and their solution algorithms) to highlight the spe- 
cial nature of the model of the smelter. 

2. The  M a t h e m a t i c a l  Model  

2.1. The  M a t h e m a t i c a l  Model  to the  S t a n d a r d  Linear  B L P  P r o b l e m  

The solution of non-linear multi-level or bi-level programming problems (NLBLPP) 
has not seen the same level of success as that enjoyed by linear multi-level pro- 
gramming problems. Generally speaking, solution of the NLBLPP has been very 
problem (or situation) specific, with a generalised NLBLPP solution algorithm far 
from a reality. As an example of the "specialist" approach see Khayyal, Horst and 
Pardalos(1992) where a solution is offered for concave objective function subject 
to quadratic constraints. Other solutions for specific situations include Suh and 
Kim(1992), Hobbs and Nelson(1992) and Edmunds and Bard(1991). 

The general formulation for the NLBLPP is as follows: 

PI: max~ F(x,y)  where y solves; (la) 

P2: maxf(x ,  y) (lb) 
y 

s.t., y) < r ( lc)  

x, y > o ( ld)  
x E W n ' ; y  E W n2 (le) 

g, F andf  non-linear. (lf) 

In this model (1), we define the feasible region (constraint region) [S], reaction 
set for y[R(x)] and solution set for y given x[Y(x)] as follows. 

In (1) above, (x, y) E W n and are the decision variables partitioned as follows; 
the higher level decision maker has control over the decision vector x E W nl and 



B I - L E V E L  P R O G R A M M I N G  IN A L U M I N I U M  I N D U S T R Y  247 

the lower level decision maker has control over y E W n2, where nl -t-n2 - n. 
The objective functions (and some constraints) are assumed to be linear. The two 
decision makers are also assumed to play a two person (i.e, duopoly) Stackelberg 
game. 

It is also assumed in solving the problem, that the higher level decision maker 
selects x first and then the lower level decision maker selects the value of y bearing 
in mind the value chosen for x. 

Here the feasible solution space (problem constraint region) is defines as: 

s = y) I y) < r} (2) 

and the set of optimal solutions to the inner problem (P2) given x as Y(x) having 
solved the non-linear programming problem: 

maxf ' (y )  = dy (3a) 
s.t., gl(y)  < (3b) 

The solution for the higher level decision maker will be selected from: 81 = (x ] 
3y E It(x) u.t., (x, y) E S}; 

The solution for the lower level decision maker will lie in the region: 

R(x) = {y*[(x ,y)  e S a n d y * E Y ( x ) }  (4) 

Note that any combination of (x,y) is feasible if x E Sl and y • R(x),  i.e,. 
(x,y) • R(x). Optimality, due to the nature of the objective functions in the 
Portland case, is simply attained with the maximization of F(x,  y) followed by 
](x, y) in S and subject to the conditions mentioned above. This will be explained 
later. 

2.2. The  M a t h e m a t i c a l  M o d e l  of  the  Non- l inear  Bi-level  P r o g r a m m i n g  
P r o b l e m  ( P o r t l a n d  A l u m l n i u m  Smel te r )  

The specific model developed to represent the Portland Aluminium Smelter as 
follows: 

PI: 

P2: 

s.t., 

maxkA F(kA ,  O) = kA  S C  solves; (5a) 

maxsc f(0, SC) - S C  (5b) 

a l k A  _< bl  (5.1) 

a2SC -1 g b2 (5.2) 

a3kA -1 -t- a4SC ~_ 0 (5.3) 

f l k A  + d i S C  -1 + e l k A S C  - gl <_ ba (5.4) 

( f2kA + d2SC -1 + e2kASC - g2)(hSC -1 + j ) - i  >_ b4 (5.5) 

( f2kA + d2SC -1 + e2kASC - g2)(hSC -1 + j ) - i  < 55 (5.6) 

kAt < kA; 0 < S C  <_ SC~, (5.7) 
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where al  is a (1 x m) vector of coefficients that  are potroom related), a2 is a 
(1 x n) vector of coefficients that  are anode production and preparation based. The 
remaining coefficients are scalars. Thus the formulation of the problem has been 
achieved with a minimum of complexity (two variables) and around 100 constraints 
associated with m and n. 

Note that  there are only two variables in this model, the kA representing the 
higher level decision maker and SC the lower level decision makers variable. Ad- 
ditionally, there are obvious non-linearities associated with the constraints, namely 
kA -1, SC  -1, and the S C k A  terms which with the SC -1 term in the constraint 
mean a quadratic solution must be obtained (i.e., we have a very simple set of 
objective functions with convex, concave, reciprocal and linear constraints). The 
latter observation arises due to two factors. The existence of functional relation- 
ships that  involve the two variables i.e., Returned Anodes = f ( S C ,  kA) and the 
interdependencies of some of the coefficients ( f ,  g, h etc) with the kA variable. 

Also, note that  the objective functions are special ones in that  they include only 
one variable, the variable associated with that  particular decision maker. This 
makes the solution of the problem easier in that  the solution (if it exists) will 
be unique and global. The requirements for optimality as set out for the BLP 
problem above are achieved automatically if the solution pair (kA, SC) are feasible 
(i.e., (kA, SC) E S). As is normally the case, in order to obtain a solution, kA 
is maximised first followed by SC's  maximisation given the resultant maximum 
kA (i.e., kA'~"*l*). These last two observations relating to optimality contribute 
substantially to the simplicity of the resultant solution algorithm to this problem. 

Note further that  the objective functions embody a bi- level relationship since 
there exists leader and follower decision bodies with their own decision spaces. 
Conflict resolution in this case requires a sequence of hierarchical independent deci- 
sions to be made. The interesting attribute associated with the objective functions 
is the non-existence of the other decision maker's variable in the others objective 
function. Bard(1983) has pointed out that  in the case where the objective functions 
are of the form: 

F = az + by; f  = dy 

that  the problems can be solved as either a bi-criteria or bi- level problem. However, 
Wen and Hsu(1991) have pointed out that  this statement is somewhat contentious. 

In the specific case dealt with in this paper, the objective functions are of the 
form: 

F = ax; f = by 

intuitively lending considerably more weight to the claim by Bard(1983) that  a 
solution to one of the problems (say bi- level) is also a solution to the other (bi- 
criteria). Consequently, it is suggested that the solution algorithm developed in 
this paper will provide a solution to both the problem classifications. Additionally~ 
it is suggested by the current problem formulation that  the leader's solution will 
be near or at its maximum potential while that  of the follower's may well be, as 
suggested by Bard(1983), below its maximum potential. 
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In (5) above, by maximising the kA, Problem 1 maximises the output of alu- 
minium. However, by maximising the SC, the P2 objective, the activity associated 
with a major part of the smelter is reduced, and therefore costs of production are 
also reduced. 

The first group of constraints, (5.1) are basically resource and capacity limitations 
associated with the potrooms and the ingot mill and directly (and proportionally) 
related to the kA variable. The second group of constraints (5.2) are associated with 
the anode production and preparation areas of the smelter. These constraints are 
specifically related to the number of anodes that  must be supplied to the potrooms 
as a result of the adopted setting cycle. The "demand" for the anodes is a function 
of the inverse of the setting cycle. The two constraints above are exclusive to one 
or the other of the variables. 

The third constraint (5.3) is essentially indicating that  

SC < (-a3kA-1)/a4 

i.e,. an upper limit on the SC imposed (in addition to the exogenously specified 
one SC <_ SCt~) by the kA being used. This is an important constraint which is 
brought about by the necessity to ensure that  a minimum proportion of the anode 
used in the potroom is returned for reprocessing in the anode area and incorporation 
into the manufacture of new anodes. This constraint is the first that  requires the 
existence of both the variables. 

The fourth constraint (5.4) ensures that  the "filler" resource (coke) is not utilised 
at a level above its maximum availability. This constraint also sees both the vari- 
ables involved. 

The fifth and sixth constraints, (5.5) and (5.6) relate to the minimum and max- 
imum proportions (respectively) of returned anodes that  may constitute the new 
anodes. The solution space to the problem (S) is shown in Figure 1. 

2.3. T h e  S o l u t i o n  A l g o r i t h m  to  t h e  P o r t l a n d  M o d e l  

As indicated, since this is a very specific problem, with non-general attributes, 
a specific algorithm has been developed to solve it which will not necessarily be 
applicable to other problems (or even an expanded version of the current problem). 
Currently, research is underway to generalise the algorithm to allow it to be able 
to solve a broader range of problems. The solution space (S) for the model in (5) 
represents the situation at Portland, and this is a very select part of the possible 
solution space. In Figure 1 below, a quite different problem is seen if the SC~, is 
allowed to extend considerably to the right. However, for the Portland model, this 
area is not considered, and Figure 1 epitomises S in which the algorithm operates. 
In later sections a number of generalisations will be considered. 

By grouping (or "blocking") the constraints into four categories corresponding to 
the functional shapes (i.e., {1} involving kA only [linear] and SC -1 only [recipro- 
cal], {2} involving kA -1 and SC [reciprocal], {3} kA and SC -1 [quadratic:concave]) 
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Figure 1. The Solution Space of the Non-Linear Bi-Level Programming Problem 

and {4}  k A  and S C -  ~ [quadratic:convex]) the  solution Mgori thm is able to  be  de- 
veloped simply. This  blocking is more  formal  t h a n  t h a t  adop ted  by Alexandrov 
and Dennis(1994),  bu t  allows a s impler  and more  t ime  efficient solution a lgor i thm 
to be  developed.  T h e  solution Mgor i thm's  simplici ty is also cont r ibuted  to by the  
na ture  of the  object ive  funct ions (each leveFs object ive  funct ion involving only t h a t  
level's variable)  and the  fact  t h a t  there  are only two variables.  If  the  model  had  
been formula ted  using the  t radi t ional  in te rmedia te  p roduc t  model l ing a p p r o a d h  
then  there  would have been someth ing  like 350 - 400 variables! 

Step  1: First  C o n s t r a i n t  G r o u p  - k A  R e l a t e d  

In tiffs section of the  a lgori thm, the  m a x i m u m  k A  is sought  involving tile first 
constra int  set  (5.1), i.e.,: 

k A  m ~  = ~ n ( b ~ , i / a , , ~ )  (i = 1 , . . . , n )  (6) 

S t e p  2A: P l a n t  U p p e r  l imit  to  SC 

T h e  m a x i m u m  set t ing  cycle is ob ta ined  viz: 

,5'C ~ 1  = S C ~  

S t e p  2B: S e c o n d  C o n s t r a i n t  G r o u p  - SC R e l a t e d  

(7) 
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The minimum setting cycle is obtained thus: 

S C  mi~ = m.ax(a2,j/b2j) (j  -- 1,.., m) (8) 
3 

At this stage the initial point (I  in Figure 1) has been established which is the 
intersection of the first two constraint type (5.1) and (5.2) representing the higher 
and lower level decision makers respectively. This would be the optimal solution if 
none of the other constraints were to impose themselves on the problem. Thus this 
point (I) represents the "stepping in" point to the feasible solution space (S). 

Step 3A: T h i r d  Cons t r a in t  - M a x i m u m  SC Given kA 

A check is now made with respect to the maximum S C  allowed given the current 
maximum kA  (kArnak1); If 

S C  max ~ [-aa/(a4kArna~l)] (9) 

then the solution obtained at I is still optimal. Proceed to Step 3B. 
If (9) is violated, then set SC max = [-as/(a4kAma~l)] and proceed to Step 3B. 

This latter case is illustrated in Figure 1. 

Step 3B 

A check is then made to ensure that S C  max1 > S C  rain . If this is met then proceed 
to Step 4 to determine whether the Coke constraint has been met or otherwise. It 
is clear that the maximum position with respect to kA and S C  is being determined 
via progressive evaluation of the verticies. If SC ma~l < S C  "~i~, then the kA  must 
be reduced until the condition is met. This is done via: 

kA  rna~l = - a 3 / ( a 4 S C  rn~n) (10) 

where S C  ma~l has been set equal to S C  rain since the previous S C  " ~ 1  violated 
SC rain. This movement around the solution space is depicted in Figure 2 - Case I. 

Assume that the situation above in Step 3B did not eventuate, and that the 
SC was above the SC rain. The next test is to determine whether or not the coke 
constraint has been violated or not. This is covered in Step 4 below. 

Step 4A: F o u r t h  Cons t r a in t  - Coke Cons t r a in t  

Evaluate whether the coke constraint has been violated, i.e., see whether 

f l  kA'~a~l + dl /SCma~l  + elkAma~lSCmaxl  - gl ~_ b3 (11) 
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Figure 2. The Solution Space of the Non-Linear Bi-Level Problem - Case I 
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Figure 3. The Solution Space of the Non-Linear Bi-Level Problem - Case III 

is met .  

If the  above constraint, is satisfied t hen  proceed to Step 5 below after having first 
de te rmined  tha t  S C  t ha t  consumes all tile available coke wi th  the  k A  r ema in ing  
its cur rent  value (as per  (12) below). This  t hen  establishes the  S C  m~" if the  value 
of the  S C  obta ined  from (12) is smaller  t h a t  the  exis t ing S C  m~" de te rmined  in (8) 
above. If however, the  cons t ra in t  is v iola ted then  perform Step 4B. The  viola t ion 
of the  coke cons t ra in t  is depicted in F igure  3 - Case III, together  with the  other 
steps required to evaluate ano ther  ver tex and  establish the  new solution. 
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Note that  the shape of the coke constraint as depicted in Figure 3 is determined 
by the parameters of the plant in terms of the net effect on coke of a increase or 
decrease in the coke consumption compared to the total material needed to make 
the new number of anodes required. 

S tep  4B 

In this step a move must be effected from A to B but this time in a more com- 
plicated way, i.e., along the coke constraint. This is achieved by a grid search 
algorithm (GSA-I the first of two applications). 

T h e  G r i d  Sea rch  A l g o r i t h m  

I t e r a t i o n  j (note for j ---- 1, kAj : kA '~a~:l and SCj = SC max1) 

1. Determine the SC that  will consume all the available coke given the current 
kAj (i.e., an increase in the SC) via; 

s c j  = max  R[(-(flk& - - - - b s )  2 

-4dlelkAj)Z/2)(2elkAj)  -1] (k -- 1, 2) (12) 

where R is that  subset of SCj that  meets the requirements below; 

SC m~'~ <_ SC i <_ SC.  (12a) 

. 

If in (12) ( f l kAj  - gl - bs) 2 < 4elkAjd~ is not met, then there is no solution 
to the problem and the algorithm terminates without considering R. Note if 
j > 1 then this will put the solution at A3 and Part 2 will move it to B the 
optimal solution. Part 1 of the GSA-I has seen the solution shift from A to A1 
in Figure 3. 

I f R  is not empty go to 3. I f R  is empty, then set SCj = SC rain or SCu 
depending on the nature of the violation of (12a) and recalculate the kAj that  
causes all the available coke to be used viz; 

(13) 

and then proceed to Part 3 
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. If; 

If; 

If; 

SCj < - a a / ( a 4 k A j )  

(which could only occur for [j = 1] when the kA  max1 and S C ma~l are un- 
constrained by the SC rna~ , i.e., at I SC max was greater than the achievable 
SC or when [j > 1] where the algorithm is set to climb to the optimal so- 
lution) then enter the grid search (kA increase phase). Note that  if kA  is 
increased a consequential shortage of coke arises since all available coke is 
already fully used. 

Thus; 

kA'~ = kAj  + ¢ (kAj  - kA j -1 ) ,  0 < ¢ < 1 (14) 

then set kAj  = kA'~ and note that  for j = 1, kAo = kA  ma~l. A "Return  
to 1 above" is then affected. Note Mso that  size of ¢ determines the speed 
of convergence to the opt imum (the maximum kA  with the S C that  causes 
the constraint to be exactly met). Having ¢ too low will be as inefficient 
as having it too high. The value of ¢ is experientially set at approximately 
0.2 in the Port land Aluminium environment. 

SCj = - a a / ( a 4 k A j )  

then the search has ended with the maximum kA  has been obtained together 
with the SC being as large as possible (subject to Max kA) with coke fully 
used. Note that  kAj  < kA  ma*l (the latter determined in Step 1.) Set 
SC  'na*l = SCj  and kA  ma*l = kAj  and proceed to Step 5. Note here that  
SC  '~'* = SCj  also. 

SCj > -a3/(a4kAj) 

(the most likely scenario here for [j = 1]) then enter the grid search (kA 
reduction phase). This is necessary since the current S C exceeds the max- 
imum (given kAj ) .  The new kAj  is determined thus; 

kAj  -= -a31(a4SCj)  

If kAj  < kAl, set kAj  = kAt and continue the search by returning to 1 above, 
however, note that  there is now a surplus of coke due to the reduction in kA.  
This moves the solution from A1 to A2 in Figure 3, with Part  1 then moving 
from A2 to A3. Note that  the algorithm is structured so that  it will use the 
coke constraint to climb to the new maximum kA  and S C  in feasible solution 
space (with respect to SC m'~lkA [5.3] and Coke [5.4]). 

Figure 4 shows a typical grid search pattern using the grid search algorithm 
outlined above. 
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C o k e  R e q u i r e d  < b 3 ( 5 - 4 )  s c m a x l  k A  

S C  r a i n  ( 5 . 3 )  " ' * 1  S C u  
. -  * _ _  I k A  1 

. ~ k 2  

• - - - - k A  4 

>b 3 

k A l <  k A 2 <  . . . . . . .  < k A  n 

Figure ~. The Grid Search Algorithm - I 

S t e p  5 A :  F i f t h  C o n s t r a i n t  - B u t t s  R a t i o  C o n s t r a i n t s  

This step evaluates whether the ratio of returned anodes to the total  anode ma- 
terials required is within specified limits. 

If; 

(f2kAn~a=l + d2/S(Tma=l + e2kAmaxlscm~=l __ g2)(h/SCm~=l + j ) - i  > 54 (15a) 

( f2kA m ~ l  + d2/,5~C maxl -I- e2kAmaxlscmaxl  - -  g2)(h/S(7 mazl + j )  i <_ b5 (155) 

is met  then an optimal solution has been found to the problem as specified in 
(5) (i.e., k A  m~=t* and SC  " ~ 1 .  Maximise F and f respectively) and the solution 
algorithm is terminated.  

If the constraints in (15) are not met,  then Step 5B is required. 

S t e p  5B  

If the  lower limit of tile proport ion of anodes returned in the total  anode materials 
(minimum but ts  ratio) required has not been met,  then follow the procedure 1 
below. Otherwise go to  procedure 2 below. 

1. Note tha t  the solution algorithm developed here is based on the observation 
(at Port land Aluminium), tha t  an increase in the S C  will lead to a decrease in 
the ratio in (15) above i.e., the left side of the ratio function is the operative 
area (ORatio/OSC < 0). This due to the fact tha t  the resulting decrease in 
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Figure 5. T h e  S o l u t i o n  S p a c e  of t h e  N o n - L i n e a r  B i - L e v e l  P r o b l e m  - C a s e  I V  

to ta l  anode mater ia l  required is propor t ional ly  less t han  the  reduct ion in re- 
tu rned  anode  material .  The  al ternative is considered later to  il lustrate how the  
a lgor i thm can be generalised. 

In order to  increase the rat io to  the  required level, the  k A  ma~l is left at its 
current  m a x i m u m  value and the  S(2 t h a t  meets  the  min imum ratio exactly is 
found via; 

s c m a x l  = m a x k e R [ - - ( f 2 k A  m~=l -- 9'2 -- baj) + ( ( f 2 k A  " ~ 1  - g2 - b4J) "~ 

- 4 e 2 k A m ~ = l ( b 4 h 2 -  d2 ) )U2) /2e2kA  m~l]  where, (k = 1, 2) 
(16) 

In (16), R contains the  values of the  S C  t ha t  meet the  same requirements as 
laid down for the  solution of (14) above. 

If  R is null, t hen  the  same procedure  as applied in Step 4B(1) is used, as is 
the  case where R is non-empty  (where an opt imal  solution to  the  problem may  
exist). This  la t ter  case is shown in Figure 5 - Case IV. Note  t h a t  here, the  coke 
constra int  will now need to  be evaluated by re turning to  Step 4. The  above 
movements  are shown in Figure 5 as a move from point  A to B. 

In the  case where R from (16) is null, if S C j  is less t han  tile min imum permit ted,  
then  the  S C  is set equal to  the  S C  'rain (i.e., S(7 "~a=l = S C  mi~) and a new k A  
needs to  be calculated tha t  will, for the  given s c m a = l ( =  SCmi~) ,  meet the  
ra t io 's  lower limit exactly (a move from Point  B to  C in Figure 6). This is 
arrived at by  using; 

= ~ = 1  ~.-.~oxl~-1 (17) k A  ~ ° ~  (b~(h2 /SC " " ~ '  - j )  + g2 - d2 /SC )( f2 + ~2,-,~ j 
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Figure 6. The Solution Space of the Non-Linear Bi-Level Problem - Case V 

. 

With the reduction in kA, there is room for the S to reduce (point D from in 
Figure 6). At this point it can be seen that  by moving up the coke constraint 
until the minimum butts ratio is encountered (which is before the SC maxlkA 
is reached) increases in SC and kA are experienced. This is an identical Grid 
Search Algorithm as that used in the coke violation situation in Step 4. The 
same procedure_s are used as encountered in Procedures 2 and 3 in Step 4, with 
the termination criteria being based on meeting the butts minimum ratio (b4) 
rather than SC ma=lM. This is shown as a movement from point D to E in 
Figure 6. This second Grid Search Algorithm is designated GSA-II. Note that  
in this situation, the coke constraint will not. be violated since the GSA-II is 
moving along it. Some general principles are expressed later suggesting wtLv the 
coke constraint is used here. 

If the upper limit of tile proportion of anodes returned in the total anode mate- 
rials required has been exceeded, then no solution exists, since the SC and the 
kA are at their maxima. 

3. E x t e n s i o n s  To T h e  S o l u t i o n  S p a c e  Of  T h e  P o r t l a n d  M o d e l  

As was indicated previously, the solution space for the Portland Model could be 
altered slightly, representing somewhat "rare" situations in terms of the smelters 
configuration and resource availabilities. These however, have not occurred since 
the plant was commissioned. It is demonstrated below how the algorithm already 
established, with a few modifications can cope with these changes. Additionally, 
the solution space is opened further again, and the modifications required to the 
algorithm indicated. This latter situation however, cannot physically occur, but is 
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demonstrated to show the flexibility of the algorithm developed to solve (5) above, 
and to foreshadow future work on the algorithm to make is applicable to a broader 
range of problems. Lastly, the replicated model of the smelter (5) is shown. The 
solution algorithm for this multivariable model (with perhaps a "cascade" approach 
to this "staircase" problem [see Jayakumar and Ramasesh(1994)]) is currently under 
development. 

In general terms, Step 1 and 2 of the algorithm are quite clear, they establish the 
initial absolute limits to S and provide a "stepping in" procedure to the solution 
space proper (S). These must be evaluated first. 

The next group of constraints to be evaluated are those, involving at least two of 
the decision variables, and which are capable of intersecting the k A  "na~l established 
in Step 1 only once. In a truly general algorithm, there would be many constraints 
evaluated here. 

Step 4 is devoted to the evaluation of the quadratic (concave) constraints, which 
may of course intersect with the k A  '~'~1 established in Step 1 twice, and will 
certainly have the ability to intersect with the constraints that intersect k A  '~'~1 
(Step 1) once. ere we are dealing only with the extreme area of S consistent with 
the maximisation of S C  and k A ,  not the lower regions of S. The latter would come 
in to consideration only if it had been violated, and then no feasible solution would 
exist. 

The last Step, deals with the quadratic (convex) constraints which can intersect 
k A  ' ' '~1  established in Step 1 twice also. The reasons for differentiating between 
the concave and convex constraints is that the derivative sign will be important in 
terms of the type of grid search direction required. This foreshadows the need to 
have access to the partial derivatives of the quadratic constraints. The use of these 
derivatives will be discussed below. 

Let the feasible solution space (S) be slightly broadened as represented in Figure 
7 to include the possibility of meeting the right hand extreme sections of the Coke 
and Butts Ratio constraints, but not to include any more than the existing number 
of constraints in these groupings. 

Firstly, allow the coke constraint (5.4) to have its maximum well to the left of 
the S C  mi'~ as shown in Figure 7. All other constraints are as initially depicted in 
Figures 1 - 6. 

In Figure 7 the initial solution I requires a move to the left in order to meet 
constraint (5.3) the S C  'naxlkA at point A. However, at A the coke constraint is 
seen to be violated.(i.e., Step 4A). If the usual Step 4 procedure is used, this will be 
incorrect since the setting cycle cannot be decreased since it is at the lowest value 
(SC rnin) and thus the k A  cannot be increased. This Procedure 1 and 2 of Step 
4B (i.e., no GSA required) is all that needs to be performed. Thus, from point A 
existing procedures will take the solution to B which will then be increased to C 
and the k A  dropped until the coke constraint is met exactly. The existing algorithm 
handles this situation. 

If in the above case the minimum butts ratio was violated, then the k A  that 
met the butts ratio exactly with the S C  '~i" would be found and the algorithm 
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Figure 7. The Solution Space of the Non-Linear Bi-Level Problem - Expanded S 

ternfinated (i.e., Step 5B (17). This would have been the  procedure if B had been 
optimal in Figure 7, provided tha t  the S C  rain w a s  to the right of the intersection 
of the minimum but ts  ratio constraint and the kA  maxl of Step 1. If the  S C  rain 
was to the left (or equal) of the intersection of the but t s  ratio constraint and the 
kA  max1 of Step 1B, then the solution would be for the S C  maxl to reduce to this 
intersection with k A m a x l  not changing. 

This t runcated solution procedure, requiring no GSA is due to the fact tha t  the 
active quadrat ic  (concave) constraint has the  sum of its partial  derivatives with 
respect to S C  and kA, negative. When the sum of the partial  derivatives are 
positive, then the normal solution algorithm (as discussed earlier) is applicable. 

The partial  derivative of the coke constraint with respect to S C  is: 

OC/OSC = ( - d i S C  -2 + e t kA  m"x) (18) 

while the part ial  derivative of the coke function with respect to kA  is: 

OC/OSC = f l  + e , S C  (19) 

The negative sum of the partial  derivatives of the coke constraint with respect to  
SC indicates tha t  the move towards optimali ty can be primarily at tained through 
the reduction of the setting cycle, with the kA  remaining constant (unless certain 
limits are reached as indicated in Figure 7 (i.e., limits oll SC).  

It  is easy to extend this approach utilising the evaluation of the sum of the 
partial  derivatives on the active constraints to the ratio constraints. However, in 
the Port land model this is not appropriate  since as can be seen from the figures 
to date, tile ratio constraints are not quadratic within the positive quadrant  (i.e., 
within the areas where kA, S C  <_ 0). 
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4. An Expansion Of The P o r t l a n d  M o d e l  I n to  A " S t a i r c a s e "  N L B L P P  

With the necessity to optimize the smelter over periods of a year or more (on a 
monthly basis), the model shown in (5) needs to be able to be modified. The 
months are linked together by various raw and intermediate raw materials, and 
other intertemporal considerations. The "staircase" involves many variables (i.e., 
kAt and SCt) and the algorithm must now be expanded to allow the solution of 
this new problem. The modified mathematical  model is a follows: 

P l :  maxkA F(kAt,  O) = kAt where SCt solves; (20a) 

P2: m a x s c  f(O, SCt) = SC~ (20b) 

s.t., al,tkAt < bl, t  (20.1) 

a~,tSC~ "l _~ b2,, (20.2) 

asskA'~ 1 + a4,tSCt <_ 0 (20.3) 

f l , tkAt + dl,,SC[ "1 -t- el,tkAtSCt - gl,t <_ b3,t (20.4) 

(f2,,kA, + d2,,SC71 + e2,,kA, SC, - g2,t)(h,SC~ -1 + j,)-~ >_ b4,, (20.5) 

(f2,tkA, + d2,tSC; -1 + e2,,kAtSG - g2,t)(htSC; -1 + j , ) - i  _< bs,t (20.6) 

OS1 - al,,kA, + DSl, ,  - CSl, ,  = 0 (20.7) 

OS2 - a~,,SC[ "l + DS2,, - CS2,, = 0 (20.8) 

OS~ - bs,t + DS~,t - CS~,t = 0 (20.9) 

kAy,t< kAt; 0 <_ SCt <_ SCt,,t (20.10) 

all variables _> 0, t = (1, ...,T) (20.11) 

In (20), the OSl ,  OS2, 0S¢ represent the initial opening stocks of raw materials 
whose use is, determined by kA, SC and both kA and SC respectively (note that  
bolded variables represent vectors). Also, DSl, t ,  DS2,t and CSc,t represent the 
deliveries of raw and intermediate materials of the three categories of stock while 
CSl,t ,  CS~,, and CSc,t represent the closing stocks of the three stock categories. 
The St is the hard coded slack variable for the coke constraint. 

Note that  only for the first period (t = 1) will the opening stock variables be used, 
thereafter they will be replaced by the closing stocks from the previous period ( t -1 ) ,  
thus producing the "staircase" effect of the model. 

There may well be some benefit in considering a "cascade solution" approach here 
as well, to minimise the solution time. 

The aspect of sensitivity analysis has also to be addressed in this model, and 
research is currently underway here as well. 

5. Concluding Remarks 

In this paper, a solution algorithm for a NLBLPP has been developed for a specific 
situation (and thus class of problem). It has been demonstrated that  this approach 
is able to be extended to be applicable for a wider range of problems than the 
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one currently being solved. Extensions to the approach outlined in this paper are 
currently being researched and tested. The area of NLBLP is a very difficult one 
with there being no general algorithm currently available, with good reason. 
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